

SEMIPROF : calcul non-linéaire d'une fondation semi-profonde sous chargement combiné

Fahd Cuira Terrasol

Sommaire

- \Rightarrow Domaine d'application
- ⇒ Principe de modélisation
- \Rightarrow Mise en œuvre dans Foxta v4
- \Rightarrow Exercices d'application

Domaine d'application

⇒ Concept de fondation semi-profonde

Domaine d'application

⇒ Concept de fondation semi-profonde

Domaine d'application

- ⇒ La démarche de justification
 - 1) Fondation semi-profonde est une fondation superficielle avec mobilisation d'une réaction frontale dans l'équilibre des charges transversales
 - SemiProf permet d'établir par un modèle en déplacements les contributions respectives de « la base » et du « fût » tenant compte des effets de non-linéarité éventuels (plastification, décollement etc.)
 - SemiProf => déplacements, efforts internes (STR) et torseur à la base. Ce dernier doit servir ensuite de donnée d'entrée à une justification de portance combinée sous FondSup

terrasol

setec

⇒ Modèle de Winkler généralisé (multicouche, non-linéaire)

⇒ Modèle de Winkler généralisé (multicouche, non-linéaire)

⇒ Loi de réaction transversale : pression – déplacement

⇒ Loi de réaction transversale : pression – déplacement

⇒ Loi de réaction transversale : pression – déplacement

 $k_{f,i}$ = coefficient de réaction kPa/m $p_{f,i}$ = pression en kPa

Construction à partir de l'essai pressiométrique (PMT)

⇒ Loi de réaction transversale : pression – déplacement

$$\kappa_{f,i} = \mu_i \frac{9E_M}{\lambda_c B_{eq} \alpha + 2B_0 \left(\frac{\lambda_d B_{eq}}{B_0}\right)^{\alpha}}$$

	Statique LT	Statique CT	Accidentel	Sismique
μ_1	1	2	2	2 à 6
μ_2	0	0	µ1/2	μ ₁ /2
p _{f,1}	p _{fluage}	p _{fluage}	p _{fluage}	p _{fluage}
p _{f,2}	p _{fluage}	p _{fluage}	p _{limite}	P _{limite}

Construction à partir de l'essai pressiométrique (PMT)

⇒ Loi de réaction transversale : pression – déplacement

$$k_{f} = \frac{5.4G}{(1-\nu)D} \left(\frac{D}{B}\right)^{0.4}$$

 $k_{f,i}$ = coefficient de réaction kPa/m $p_{f,i}$ = pression en kPa

Construction à partir des solutions en élasticité (G, v) – Gazetas (1991)

⇒ Loi de réaction tangentielle (verticale) : frottement – tassement

⇒ Loi de réaction tangentielle (verticale) : frottement – tassement

⇒ Loi de réaction tangentielle (verticale) : frottement – tassement

⇒ Loi de réaction tangentielle (verticale) : frottement – tassement

⇒ Loi de réaction tangentielle (verticale) : frottement – tassement

⇒ Loi de réaction tangentielle (horizontale) : frottement – déplacement

⇒ Loi de réaction tangentielle (horizontale) : frottement – déplacement

⇒ Prise en compte des effets de dégradation en surface

Terrain multicouche avec différenciation des termes « frontaux » et « tangentiels »

⇒ DDC multiple + comportement non linéaire en pointe

		·				
2		Conditions aux	limites et charge	ment		
s de charge multiples en tête		V		Ŧ		
N*		[kN]		[kN]	[kN.m]	
1			1000,00	400,00	0,00	
2			800,00	200,00	400,00	
3			1200,00	240,00	-200,00	
4			500,00	320,00	-50,00	
5			1500,00	360,00	50,00	
6			1000,00	160,00	70,00	
7			1200.00	100,00	80,00	
9			1100.00	200.00	90,00	
10			900.00	250,00	-100.00	
11			800,00	260.00	-200.00	
12			1500,00	-100.00	-300.00	
13			1500,00	-50,00	20,00	
14			1500,00	-150,00	40,00	
15			1500,00	-200,00	100,00	
					↓ ≦₩ 4 .	
ndtions en pied						
nditions en pied orme de la base	Rectangulaire 🗸	2				
nditions en pied orme de la base mensions	Rectangulaire V Longueur L (m)	6.00 🗘	Largeur B (m)	2,00	Loi élas	sto-plasti
inditions en pied orme de la base imensions aideur verticale en pointe	Rectangulaire v Longueur L (m) Raideur k _v (kN/m ³)	6.00 Ç 10000,00 Ç	Largeur B (m) Valeur limite q _{max} (kPa)	2,00 🗘	Loi élas	sto-plastic
inditions en pied prime de la base mensions sideur verticale en pointe sideur tangentielle en pointe	Rectangulaire v Longueur L (m) Raideur k _y (k0/m ³) Raideur k _h (k0/m ³)	6.00 C 10000.00 C 10000.00 C	Largeur B (m) Valeur limite q _{max} (JPa) Valeur limite q _{max} (JPa)	2.00 C 1000.00 C 700.00 C	Loi élas avec c	sto-plasti lécolleme
nditions en pied orme de la base mensions aldeur verticale en pointe aldeur tangentielle en pointe arges réparties normales au cieu	Rectangulaire ✓ Longueur L (m) Raideur k _y (kN/m ³) Raideur k _g (kN/m ³)	6.00 C 10000.00 C 10000.00 C	Largeur B (m) Valeur limite q _{max} (i:Pa) Valeur limite t _{max} (i:Pa)	2,00 C	Loi élas avec c	sto-plastic lécolleme
ndtions en pied rme de la base mensions lideur verticale en pointe lideur tangentielle en pointe sideur tangentielle en pointe Activer les charges réparties	Rectangulaire ✓ Longueur L (m) Raideur k _y (kN/m ³) Raideur k _g (kN/m ³)	6.00 C 10000.00 C 10000.00 C	Largeur B (m) Valeur limite q _{max} (kPa) Valeur limite t _{max} (kPa)	2,00 C	Loi élas avec c	sto-plastic lécolleme
nditions en pied norme de la base mensions aldeur verticale en pointe aldeur tangentielle en pointe arges réparties normales au pieu- Activer les charges réparties	Rectangulaire ✓ Longueur L (m) Raideur k _v (kN/m ³) Raideur k _n (kN/m ³)	6.00 C 10000.00 C 10000.00 C	Largeur B (m) Valeur limite q _{max} (LPa) Valeur limite t _{max} (LPa)	2.00 C	Loi élas avec c	sto-plasti lécolleme
ndtions en pied orme de la base mensions aideur verticale en pointe aideur tangentielle en pointe arges réparties normales au pieu . Activer les charges réparties	Rectangulaire ✓ Longueur L (m) Raideur k _y (kN/m ³) Raideur k _g (kN/m ³)	6.00 C 10000.00 C 10000.00 C	Largeur B (m) Valeur limite q _{max} (LPa) Valeur limite t _{max} (LPa)	2.00 \$ 1000.00 \$ 700.00 \$	Loi élas avec c	sto-plasti lécolleme

setec

⇒ Diagrammes des déplacements, moments et efforts tranchants

terrasol

\Rightarrow Bilan des efforts à la base de la fondation

N° cas charge	V [kN]	T [kN]	M [kN.m]	Flèche _{tête}	Rotation _{tête}	Tassement _{tête}	Effort vert. _{pied}	Effort horiz. _{pied}	Moment _{pied}	% comp.	Contr. _{max}	Contr. _{min} [kPa]
1	1000,00	400,00	0,00	0,48	7,21E-04	0,03	1500,00	-28,42	777,41	0,72	1000,00	for all
2	800,00	200,00	400,00	0,30	4,61E-04	0,03	1300,00	-24,14	572,47	0,84	773,16	
3	1200,00	240,00	-200,00	0,23	3,39E-04	0,04	1700,00	-14,63	451,94	1,00	763,11	
4	500,00	320,00	-50,00	0,39	5,84E-04	0,02	1000,00	-21,10	563,66	0,66	762,48	
5	1500,00	360,00	50,00	0,42	6,25E-04	0,05	2000,00	-29,48	786,68	0,90	1000,00	
6	1000,00	160,00	70,00	0,19	2,85E-04	0,04	1500,00	-15,08	379,51	1,00	658,92	
7	1000,00	100,00	80,00	0,12	1,88E-04	0,04	1500,00	-10,38	251,13	1,00	562,88	1
8	1200,00	150,00	90,00	0,18	2,74E-04	0,04	1700,00	-14,78	365,16	1,00	698,19	1
9	1100,00	200,00	-80,00	0,21	3,07E-04	0,04	1600,00	-14,46	409,95	1,00	706,70	
10	900,00	250,00	-100,00	0,26	3,86E-04	0,03	1400,00	-17,41	511,12	0,95	734,04	
11	800,00	260,00	-200,00	0,26	3,75E-04	0,03	1300,00	-15,48	492,85	0,93	696,99	
12	1500,00	-100,00	-300,00	-0,16	-2,52E-04	0,05	2000,00	16,14	-335,76	1,00	751,19	2
13	1500,00	-50,00	20,00	-0,05	-7,69E-05	0,05	2000,00	3,62	-102,49	1,00	576,67	4
14	1500,00	-150,00	40,00	-0,16	-2,36E-04	0,05	2000,00	11,37	-315,16	1,00	735,78	2
					ſ	Donne	ée d'en	trée poi	ur FON	DSUP]	

\Rightarrow Massif circulaire

⇒ Massif circulaire

🔰 terrasol

\Rightarrow Massif circulaire

\$	♥ <u>Massif rectangulaire</u> ♥ <u>M</u>	assif circulaire 🛛 🖧			
	🛛 Paramètres 🔍 Couches 🔍 Condi	tions aux limites et chargement			
		Conditions aux	limites et ch	argement	
	Cas de charge multiples en tête				
	N°	V [kN]		T [kN]	M [kN.m]
	1	3	300,00	400,00	0,00 ^
	2	2	250,00	200,00	400,00
	3	4	400,00	240,00	-200,00
	4	1	150,00	320,00	-50,00 🗸
	2				🍵 👕 🏠 🗺
	Conditions en pied				
• • •	Forme de la base	Circulaire 🗸	?		
	Dimensions	Diamètre B (m)	2,50 🗘		
	Raideur verticale en pointe	Raideur k _v (kN/m ³)	25000,00 🗘	Valeur limite q _{max} (kPa)	1500,00 🗘
	Raideur tangentielle en pointe	Raideur k _h (kN/m ³)	20000,00 🗘	Rugosité limite δ _{max} (°)	30,00 🗘

\Rightarrow Massif circulaire

			ontenu du presse-papiers
	Colonne 3	Colonne 2	Colonne 1
0		4	30
400		2	25
-200		2	40
-50		3	15
50		3	50
70 -30		1	30
80 2		1	30
90 4		1	40
-80 10		2	30
-100		2	25
-200 順 🐔		2	25
-300		-1	50
20		-	50
40		-1	65
100		-2	16
	M [kN.m]	г N]	V kN]
	M [kN.m]	г N]	V [kN] Dptions
· · · · ·	M [kN.m]	N] Seules les cases écrites en noir seront importées.	V kN] Options
	M [kN.m]	N] Seules les cases écrites en noir seront importées.	V [kN] Dptions
	M [kN.m]	N] Seules les cases écrites en noir seront importées. importer Ligne 1 v Dernière ligne à importer	V kN])ptions Première lig
	M [kN.m] .igne 15 V re de lignes à créer dans la table : 0	N Seules les cases écrites en noir seront importées. importer Ligne 1 v Dernière ligne à importer Nombre de colonnes à importer dans la table : 3 Nor	V [kN] Dptions Première lig Nombre de lignes à importer dans la table :
	M [kN.m] igne 15 V e de lignes à créer dans la table : 0	N] Seules les cases écrites en noir seront importées. I importer Ligne 1 V Dernière ligne à importer Nombre de colonnes à importer dans la table : 3 Nom	V [kN] Dptions Première lig Nombre de lignes à importer dans la table : :
	M [kN.m] .igne 15 ✔ re de lignes à créer dans la table : 0	Seules les cases écrites en noir seront importées. importer Ligne 1 V Dernière ligne à importer Nombre de colonnes à importer dans la table : 3 Nom Importer Annuler Configurer le D.1 V Lance	V (N] ptions Première lig Nombre de lignes à importer dans la table :

\Rightarrow Massif rectangulaire

	\$	ctangulaire 🛛	♥ <u>Massif ci</u>	rculaire =	÷				
	🔮 Paramètres	Couches	Conditions aux	κ limites et charger	nent				
				Défi	nition du s	ol			
	Dégradation à	proximité de la su	Irface						
	Merise en c	ompte d'une dégr	adation à proximit	é de la surface			2		
			Cote du toit d	e la zone de dégra	dation (m)		4,00 🗘		
			Cote de la ba	se de la zone de d	égradation (m)		2,00 🗘		
Cote de référence : 4.0 m			Facteur de ré	duction x_{β}			0,10 🗘		
20 m	Loi de mobilisa	tion de la réaction	frontale p-y						
	N°	Nom	Couleur	Z _{base} [m]	k _{f1} [kPa/m]	P _{f1} [kPa]	k _{f2} [kPa/m]	P _{f2} [kPa]	B _{eq} [m]
-1.0 m	1	Couche 1		2,00	5,00E03	150,00	2,50E03	250,00	2,00
	2	Couche 2		-1,00	1,00E04	250,00	5,00E03	400,00	2,00
	??			Base de	données			+ í h	*
	Loi de mobilisa	tion de la réaction	tangentielle t-z-						
	N°	Nom	Couleur	Z _{base} [m]	k _{t1} [kPa/m]	P _{t1} [kPa]	k _{t2} [kPa/m]	p _{t2} [kPa]	P _{eq} [m]
	1	Couche 1		2,00	2,50E03	20,00	5,00E02	40,00	4,00
Visible	2	Couche 2		-1,00	5,00E03	30,00	1,00E03	60,00	4,00
Vue en coupe									<u>~</u> €

⇒ Massif rectangulaire

Paramètres S Couches Con	ditions aux limites et chargement			
	Conditions aux lir	nites et charg	ement	
Cas de charge multiples en tête				
N°	V [kN]	T [kN]		M [kN.m]
12	650,0	D	-100,00	-300,00 ^
13	650,0	D	-50,00	20,00
14	650,0	D	-150,00	40,00
15	160,0	D	-200,00	100,00 🗸
Conditions en pied				🖶 🖆 👘 🖑 💷
Forme de la base	Rectangulaire 🗸 🔽	?		
Dimensions	Longueur L (m)	6,00 🗘	Largeur B (m)	2,00 🗘
Raideur verticale en pointe	Raideur k _v (kN/m ³)	10000,00 🗘	Valeur limite q _{max} (kPa)	1000,00 🗘
Raideur tangentielle en pointe	Raideur k _h (kN/m ³)	8000,00 🗘	Rugosité limite δ _{max} (°)	30,00 🗘